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A theoretical calculation is made of (the diagonal elements of) pressure-strain-rate 
calculation pol(p[Vu + ( V U ) ~ ] )  for a simple turbulent shear flow. This calculation 
parallels a previous calculation of the off-diagonal element. The calculation is des- 
cribed as follows. (1)  Beginning with the Navier-Stokes equation, an expression for 
the (diagonal) pressure-strain-rate term is derived analytically in terms of measurable 
quantities (velocity spectra) - this derivation makes use of a cumulant discard. 
( 2 )  It is proved that, to lowest order in the spectral anisotropy, the diagonal pressure- 
strain-rate term is linearly proportional to the diagonal Reynolds-stress elements. 
(3) A formula is derived for the proportionality constants (Rotta constants) in terms 
of arbitrary spectra. (4) This formula is used to calculate theoretically the numerical 
value of Rotta’s constant C,, for models of velocity spectra (the variation of Cii with 
variations of spectral shapes and of Reynolds number are also determined). (5) Defi- 
ciencies and limitations of Rotta’s model are identified and discussed. 

It is found that Rotta’s expression for 2p01(p aui/ai) is only valid for special spectra. 
Surprisingly large deviations of Rotta’s expression from theory are found for a more 
complex spectra thought to be typical of simple shear flow. In  addition, it is found 
that C, is intrinsically and quantitatively different from Cii because the latter 
depends importantly on the large-wavenumber part of the spectrum (the inertial 
subrange) whereas the former does not. The numerical ratio C,,/C, is calculated 
theoretically and shown to be about 2 for the zero-moment model. It is concluded 
that a linear term in the stress anisotropy as proposed by Rotta does not always 
exist. The deviation of Rotta’s model from theory is understood by distinguishing 
between the spectral anisotropy and the stress anisotropy. 

For the zero-moment spectral model, where the Rotta relation is valid, it is found 
that C,, varies significantly with large Reynolds number but is rather insensitive to 
the large-wavelength part of the spectrum. 

1. Introduction 
In a previous paper (Weinstock 1980)) hereinafter referred to as I, an off-diagonal 

element, 2A,, of the pressure-strain-rate tensor was theoretically calculated directly 
from the Navier-Stokes equation. The theoretical 2A& was then compared with 
Rotta’s model (1951) and with empirical determinations of the pressure-strain rate. 
The purpose of the present paper is to calculate 2Ag, the diagonal elements of the 
pressure-strain-rate tensor. The goals of this calculation parallel those in I. These are: 
(1) to derive analytically an expression for the diagonal elements of the pressure-strain 
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rate in terms of measurable quantities (the velocity spectra); (2) to prove that (to 
lowest order in the spectral anisotropy) the pressure-strain rate is linearly propor- 
tional to the Reynolds stress; (3) to derive a formula for the constants of proportion- 
ality (Rotta constants) in terms of arbitrary velocity spectra; (4) to use this formula 
to calculate analytically Rotta’s constant for models of energy spectra in nearly 
homogeneous shear flows and investigate the variations of these constants caused by 
variations of the spectra and flow parameters; and (5) to assess the validity or limita- 
tions of Rotta’s model by comparison with the theory. 

In  I, it was not possible to investigate or assess Rotta’s model to any extent because 
only an off-diagonal element of the pressure-strain rate was calculated. A more 
extensive assessment is possible here because the three diagonal elements are calcu- 
lated as well. Comparisons can also be made with empirical and experimental deter- 
minations of the pressure-strain rate (e.g. Reynolds 1976; Hanjalic & Launder 1972; 
Lumley &Khajeh-Nouri 1974; Launder, Reece & Rodi 1975; Lumley & Newman 1977; 
Comte-Bellot & Corrsin 1966; Champagne, Harris & Corrsin 1970; Harris, Graham & 
Corrsin 1977; and others). 

1.1. Plan and assumptions of the calculation 
The method of our calculation from the Navier-Stokes equation is the same as des- 
cribed in $1.1 of I. It is outlined as follows. Nonlinear expressions for the velocity 
fluctuations u and pressure fluctuations p are derived from a straightforward solution 
of the Navier-Stokes equation. These expressions for u and p allow us to relate the 
pressure-strain-rate tensor p;’((pVu) + ( ~ V U ) ~ )  (po is the density and the superscript 
T denotes the transpose) to a two-point fourth-order velocity correlation. This 
correlation is then evaluated analytically in terms of the single-point velocity co- 
variance (i.e. the Reynolds stress) by a cumulant discard. The distinctions between 
this calculation and those based on the direct-interaction approximation (Herring 
1974; Leslie 1973; and Schumann & Herring 1976) were mentioned in I. Briefly, we 
are less ambitious than these authors because we do not calculate the energy spectra 
as they do, but, instead, simply derive the pressure-strain rate in terms of the spectra. 
Our calculation is less self-contained, but encompasses a wider range of turbulence 
states and is entirely analytic. 

The simplifying assumptions of the calculation are the same as in I. Our intention 
is to consider a simplified shear flow so that the underlying approximations will be 
masked as little as possible by the complexity of that flow. We thus restrict ourselves 
to: (1) a uni-directional mean flow U = ( Uo(z), 0,O) in a Cartesian co-ordinate system 
(x, y, z ) ;  ( 2 )  aU/az and all ensemble-average quantities (correlation functions) are 
assumed to vary only a little in space and time on scales 2nlcx1 and T,, respectively, 
where k, is the characteristic wavenumber of the energy-containing region of the 
spectrum and T, is the Lagrangian integral time scale; and (3) large Reynolds number. 
The calculation can be readily generalized to more complex flow geometries if that 
should prove desirable. A correction for low-Reynolds-number flow is given in I 
(appendix D ) . 

The organization of this paper is as follows: In  $ 2 the pressure-strain rate 2 A ~  is 
derived in terms of the velocity spectrumS(k) (a measurable quantity) to general 
order in anisotropy. I n  $3, 2.4: is expressed explicitly in terms of the Reynolds 
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stress (uu) s 1 dkS(k) to first order in the spectral anisotropy. Theoretical derivations 
of Rotta’s expression for 2AZ and of the numerical value of Rotta’s constant Cid are 
given in $8 4 and 4.1. There it is shown that Rotta’s expression for 2Aii is only valid for 
a special class of spectra including what is referred to  as the zero-moment model. A 
fundamental difference between 2Ag and 2A&, and between C,, and C,, is pointed 
out in 54.2, and an expression is derived for the ratio Cxz/Czz. Large deviations from 
Rotta’s expression are found in 54.3 for a more general spectral model in which the 
maximum (spectral peak) of S,, occurs a t  a wavenumber different from that of the 
maximum of S,,. This spectrum, referred to as the higher-moment model, was found 
to occur in a nearly homogeneous shear flow by Kaimal et at. (1972). A discussion of 
the theoretical deficiencies and limitations of Rotta’s model is given in $ 5 .  The 
deviations of Rotta’s model from theory is understood by distinguishing between the 
spectral anisotropy and the stress anisotropy. A selective comparison with experi- 
ments is made in 5 G ,  a discussion of errors in the theory is given in 4 7 ,  and a summary 
with conclusions is given in 3 8. 

2. Derivation of pressure-strain rate in terms of velocity spectra 
I n  this section the diagonal elements of the pressure-strain-rate tensor are derived 

in terms of measurable velocity spectra. The pressure-strain rate tensor occurs in the 
Reynolds-stress transport equation and is defined by 

where u = u(r,t) is the fluctuating part of the fluid velocity a t  position r a t  time 
t ,  p = p (r, t) is the fluctuating part of the pressure at  r and t ,  and the angle brackets 
denote an ensemble average (mean value). Our object is to  calculate the diagonal 
elements 

where x, y, z are the three Cartesian co-ordinates, and ui is the component of u along i. 
First we calculate 2p;1(azc,/az); afterwards, i t  will be simple to obtain the other 
diagonal elements (given in appendix €3). Much of our calculation is very similar to  
the previous calculation of the off-diagonal element 2p;l(p au,.az) given in I ,  and, 
for the sake of brevity, some proofs of our derivation will merely be quoted from 
there. However, sufficient details will be included to  make the present derivation 
complete and coherent. 

It is most convenient to evaluate (pau , /az )  in terms of its Fourier transform 
expressed as follows : 

where the asterisk * denotes the complex conjugate, V is the volume of the system, 
and u,(k) and p(k) denote the Fourier transforms of u, and p defined by 

and 
u,(k, t)  = 1 dru,(r, t)  exp ik . r 

p(k, t )  = Jdrp(r , t )expik.r .  
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Both p and u, are obtained from the Navier-Stokes equation. The fluctuating part 
of that equation is given by 

all - + (u + U )  . vu = (u. VU) -2 +u. vu + VVZU, 
at Po 

where U is the mean flow velocity, v is the molecular viscosity, and po is the fluid 
density (assumed to be constant). Equation (2) is obtained from the Navier-Stokes 
equation by subtracting out its average. 

First we obtain p ,  and afterwards u. A useful expression for p is obtained, as is well 
known, by taking the divergence of (2) and using V .  u = 0 (incompressibility) : 

au au, 
= - v .  (u. VU)’ - 2 -2- V2P(t) 

Po ax a2 9 

where 
(u. VU)’ E u.  vu - (u. VU) 

(3) 

(4) 

is the fluctuating part of u . V u ,  and we have used the idealized flow U = [Uo(z), 0,  01 
so that. V . (U.  Vu + u. V U )  = 2(8u,/ax) (aUo/az). An expression for p is now obtained 
by taking the Fourier transform of both sides of (3) and neglecting the spatial variation 
of aUo/az compared with that of us. The result is 

where u(k, t )  is the Fourier transform of u, and N(k, t)  is the transform of the non- 
linear fluctuation term V . (u . Vu)‘  given explicitly by 

N(k,t) = -Is3:. [u(kl,t)u(k-kl,t)-(u(kl,t)u(k-kl,t))].~ k 

In (6), we have used the inverse Fourier transform 

u(r, t) = (2n)-3~dklu(kl, t)expik. r. (7) 

Substitution of ( 5 )  in ( I )  yields the pressure-velocity correlation in the familiar 
form 

2pi1(p(t) au,(t)/az) = 2Ag+ 2Ag, 

where 2Ag is seen to be the contribution to the pressure-strain rate coming from the 
turbulent-velocity fluctuation part of p ,  and 2 A z  is the contribution from the mean- 
velocity (mean-strain) part of p .  Note that the expression for A$ differs from the 
analogous expression for A,N, given in I only because kz occurs in the integral instead 
of k,. 

It is the term A: in (8) for which Rotta (1951) proposed his model. This term con- 
tains the third-order (triple-point) velocity correlation (@ N )  and, hence, presents 
a familiar problem of closure. A (closure) calculation of (u,*N) is given in I in great 
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detail. I n  that calculation, u, is expressed as a second-order velocity fluctuation 
(which is obtained by formally solving the Navier-Stokes equation), so that (uXN) 
can be expressed as a fourth-order velocity correlation. A cumulant-discard approxi- 
mation is then applied directly to that fourth-order correlation t o  obtain (a: N )  in 
terms of a two-point covariance (closure). Since the details of that calculation are 
already given in I, we shall present only the result here. Thus, the expression for A2 is 
obtained from equation (27) of I by multiplying the integrand of (27) by k, /k ,  (the 
fact that A 2  and A& are related by the factor kJk, in their k-integrals is seen by 
comparing the present equation (8) with equation (1 1)  of I). We thus have immediately 

where 

S(k) (u(k, t)U*(k, t ) )  V-', / ( z d . k , 3  - S(k) = (uu), (10) 

(a tensor) is the velocity covariance spectrum a t  wavenumber k and time t ,  k, = k - k,, 
and bzz(k), r,, and S are defined by 

Here vf = +(u.u) is the mean-square fluctuating velocity of the turbulence, and 7c 

is recognized to be characteristic of the decay time of a spectrum a t  wavenumber 
(k:+IC2,)* (e.g. Kraichnan 1959). (Note that (9) differs from the expression for A& 
given in (27) of I in that bzz(k) E (kz/kz)  b occurs instead of b. Note, too, that 
(2n)-S/dkS(k) equals (uu) because the spectrum S(k) is defined as the Fourier trans- 
form of the two-point velocity covariance.) 

Equation (9) determines the pressure-velocity correlation A g  in terms of a mea- 
surable quantity (the velocity spectrum S). This equation is a principal relationship 
of our work. No approximations have been made about the anisotropy, so that (9) 
is valid to  all orders in the anisotropy. The main limitation of (9) is to slow vari- 
ation of mean quantities in space and time, and the main approximation is the 
cumulant discard discussed in I (see appendix A of I). 

If the velocity spectrum were known by theory or experiment, it would then be 
straightforward to evaluate (9) and thereby determine the pressure-strain rate (to 
general order in the anisotropy). As pointed out in I ,  some aspects of S are known 
fairly well and other aspects of S can be modelled to permit a useful evaluation of (9). 
The dependence of A;: on variations of the models, and on the flow parameters, can 
then be tested. In  the following sections we make such an evaluation of (9) to first 
order in anisotropy to determine A 2  in terms of the Reynolds stress. This theoretical 
A,N, is afterwards compared with Rotta's model and with experiment. 

Let us next continue to the evaluation of (9) to first order in the anisotropy. 
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3. A2 to first order in anisotrophy and stress 
The purpose of this section is to evaluate A& as given by (9), explicitly in terms of 

the Reynolds stress. This evaluation is made to first order in the anisotropy, and the 
resulting expression is compared with Rotta's model. Our calculation of AE parallels, 
and is very similar to, the calculation of A,N, already given in I. The difference, as 
mentioned above, arises from the factor k,/le,. 

To expand AE in powers of anisotropy, we divide S(k) in (9) into an isotropic part 
S(k)' and an anisotropic deviation S(k)A as was done in I :  

S(k) = S(k)r+S(k)A, 
kk E(k)  

S(k)' = 2772 I -- - ( k 2 )  k2 '1 
I is the identity matrix, and E(k)  is the scalar energy spectrum, which satisfies 

/ d k E ( k )  = gu. u) = gv;. 

Similarly, the stress tensor is divided into an isotropic part vgl and an anisotropic 
part a: (uu) = vg I + a. 

We emphasize that the spectral anisotropy Sn is more general than the stress 
anisotropy a. This distinction, which is illustrated by the fact that a zero value of a 
does not imply a zero value of SA,  is found in 54.3 to cause a departure from Rotta's 
model. Note, too, that the definition of Sr(k) in (12) and (12') implies that 

tr(2n)-3/dkS(k) = t r (2~r) -~ /dkSl (k)  = (u.u), 

which means that there is no net energy in t r  S A ;  i.e. the anisotropy corresponds to 
more energy in one direction than another, not to a change in the total energy. 

Equation (9) can now be linearized by substituting: (12) and (13) and neglecting 
all second- and higher-order terms in the anisotropy (SA and a). This linearization 
yields 

(13) 

b" : [S(k,) S(k,)'+ S(k,)lS(k,)] : k2 
(kq + ki)4 k2v, 

which gives Ag to first order in the spectral anisotropy (the quantity S is nonlinear 
and very small). 

It is not difficult to express the right-hand side of (14) in terms of the Reynolds 
stress. A useful simplification for this purpose comes from incompressibility: 

k,.S(k,) = 0, k.S(k,) = (kl+k,).S(k2) = k,.S(k,). 

The first term in the integrand of (14) can thus be expressed, with (12), as 

kf bZZ : S(k,) S(k,)l: k2k-, = kz k,. S(k,) . 2  - - (k,. S(k,) . k,)] 
k2 
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and the second term is expressed, after interchanging the dummy variables of inte- 
gration (k ,  -+ k,, k, -+ k,), as 

b2Z : S(k,)'S(k,) : kzk-, = 

The third term in (14) has been evaluated in a straightforward, though lengthy, 
integration, and we have found it very small in comparison with the first two terms; 
it is henceforth neglected. 

To express (15) and (16) in terms of stress-tensor elements (uiui), let us expand 
out the spectral terms kzk2.S(k , ) .2  and k 2 . S ( k 1 ) . k ,  in (15) and (16) as follows: 

where to condense notation we use Sij to  denote S,,(k,) (i,j = x, y, z )  so that, for 
example, S,, = Sxx(kl). It is desirable to eliminate the off-diagonal spectral elements 
S,,, S,, S,, because Rotta's hypothesis predicts that  A: should depend on only the 
diagonal elements Xi$, in the form (uiui) = ( 2 ~ ) - ~ 1 d k , S ~ & k , ) .  Expressions for the 
off-diagonal elements (in terms of the diagonal elements) are easily obtained from 
the incompressibility conditions 

k, .S(k , ) .A = klxSx,+kl,S,,+k,,S,, = 0, k, .S(k,) .Q = 0, k, .S(k,) .L = 0. 
Simple combinations of these conditions yield the off-diagonal elements as 

(19) 

2 k l X  k,,SX, = - e x  Ex, - k?, S,, + k:,fi,,, 

2klXk1,flXZ = - k : x ~ x x  - k"1fJx,z + k:,S,,, 

2k1, klZS,, = - k?, X,, - k:z 4, + k:x Szx, 

which allows us to eliminate the off-diagonal elements in (17) and (18). Substituting 
(15)-( 19) into (14) we have A$ expressed in terms of the diagonal elements as follows: 

(204 
k 2 k l , - k , k 2 2 - - 2 $ [ k ~ - ( k l . k , ) 2 ]  k ,  . k,  k2 

k2, 
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where the k integration has been transformed into a k, integration by k = k, + k,, 
and k2 = k,/k, is the unit vector along k,. The yzi arise from straightforward algebra 
when (19) is substituted into (15) and (16).  We wish to reassure the reader that  
although yzi is complex looking, the integrations in (20a)  can be performed quite 
simply, as is done in appendix A. Furthermore, the term [k; - (k, . k,)] k, k,, is domi- 
nant in yzz, with the other terms of yzz providing a small correction. The terms B*ki, 
and B*ki, are dominant in yzz and yzy, respectively. 

Equation (2Oa) can be expressed easily in terms of the stress (uf). To do so we 
write simply 

Sii(k1) Sii(k1) (uf> [(2.rr)-3~dkl~ii(k,)~-1, 

~ ( k , )  = ~ k , )  (gv;) [ (477)-11dk2~(k,)~-1,  

A: = - ( k *  z z v o ( u 3  + k:pW;) + Ic,*,V,(U3>), 

which are identities, to  obtain 

(21) 

where kei is a wavenumber defined explicitly by 

That is, k:i is the mean value of yzi averaged over the velocity spectra Xii(kl) and 
E(k2) k;2. The value of kzi can be calculated readily, as is done in $4. As mentioned 
in I, (k:i)-l is a novel kind of integral scale because i t  is a double integral over two 
spectra. This integral scale is a basic characteristic of the pressure-velocity correla- 
tion; a knowledge of kzt is equivalent to a knowledge of A:. 

To compare (2Oa) with the Rotta model we first express kz. in terms of the energy 
dissipation rate c and the energy density e, E (4)~;. This is trivial to do because 
(kZv,)-l and e/e, both have the dimensions of time so that (20a)  can be written 
immediately as 

(22) 
e 

2A2 = - - [PZX(U2 + P&;> + Pzz(ut>l, 
e, 

where Psi is a dimensionless proportionality constant given by 

P,i 2kZ(e,/c), (23) 

Equation (22) determines A,N, in terms of the stress (uf), and the numerical coefficients 
pzi are determined in terms of measurable quantities (spectra). Note that (22) agrees 
with Rotta’s model if P,, = Pa, = -+PZz. The numerical value of PZi is calculated in 
$ 4  for two classes of spectral models. Expressions for the other diagonal pressure- 
strain-rate elements A,N, and A;, are given in appendix B. 

4. Theoretical calculation of psi and Rotta’s constant 
To complete the calculation of A$ we must calculate the numerical values of the 

proportionality constarlts PZi. This calculation is very similar to the previous calcu- 
lation of G,,, the Rotta constant, made in I ( S G  and  appendix R of I )  for models of 
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the spectrum S. The sensitivity of psi to these models can be examined after the 
calculation. 

The calculation of pZi consists of performing the k, and k, integrations in (24). 
This integration is divided into two parts. First we integrate over the directions 
(spherical angles) of k, and k, and afterwards we integrate over their scalar magni- 
tudes. The integrations over the directions of k, and k, are given in appendix A. 
There it is found, for spectra satisfying (29), that pzi is given by (see (A 20), (A 28), 
and (A 29)) 

d, = du = - 0.36, d, = 0.72, J 
where Eii(kl) is a scalar spectrum obtained by integrating Sii(k,) over a spherical 
shell of radius k, ; i.e. 

which satisfies I,"dkEii(k) = (u t ) .  Comparing (26) with (12) it is seen that Eii also 
satisfies E = $(Ex,+ E,,+ E,,). The uncertainties in our values of d,, d,, d, are small 
for the model spectra (29) that are used in this section. The variation of di with vari- 
ations of the model is calculated in $4.3. 

Before integrating (25) to obtain the numerical value of psi, we call attention to the 
expression obtained by substituting (25) into (22) : 

(Simila,r expressions for A:, and are given in appendix B.) There are two evident 
features of (27): A: is seen to approach zero (as it must) as the spectrum approaches 
isotropy and, more noteworthy, A: can be non-zero (with a consequent flow of fluid 
velocity) even when the fluid stress is isotropic ((u:) = (u:) = (u:)). This is because 
the spectrum need not be isotropic even though the stress (uu) is; i.e. E,, - BE,,- &Egg 
need not be zero even though ( u ~ ) - ~ ( u ~ ) - ~ ( u ~ )  is zero. Such a case cannot be 
described by Rotta's model. We refer to that case as a higher-moment spectral 
anisotropy ((uu) is the zeroth moment of the spectrum S), and will discuss it in 34.3. 
For the remainder of this section we restrict ourselves to calculating pzi for the more 
typical case of anisotropic fluid stress (uu). 

4.1. Calculation of psi for the zeroth-moment model (Rotta's model) 

The numerical value of pzi is obtained by integration in (25). However, to perform 
this integration we must resort to a model of E and Ei,. Afterwards we will examine 
the sensitivity of psi to that model. We use the same model of E that was used in I to 
calculate the off-diagonal Rotta constant C,, and that was previously used by Comte- 
Bellot & Corrsin (1966) and by Reynolds (1976) to estimate a parameter of decaying 
turbulence. It is given by E(k)  = cxe8k-Q for k, < k 6 kv, E(k)  = cxd(kL-*-m) km for 
k < kL, and E(k)  N 0 for k > k,, where k, is the ' cut-off' wavenumber due to molecular 
viscosity, m > - 1 is an adjustable parameter, and a N 1-5 is the Kolmogoroff con- 
stant. In this model, there is made the familiar assumption that E ( k )  has a maximum 
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value, or peak, a t  some wavenumber k,, and that the main contribution to the 
velocity integral 1; dkE(k) comes from k in the vicinity of k,. This vicinity is called 
the energy-containing region. The relationship between e and vo or e, for this model 
is given by substitution of E into (12’): 

(28) I W: = d k z $ [ 1  +Q(m+ l)-l-R,&] (R, l),  

R, 5 (k”/kL) t  

where the ’Reynolds-number’ term R$ comes from the viscous ‘cut-off’ a t  k,. R, is 
related to the viscosity v by R, x vo/vk,. 

The modelling of Eii is a little intricate because, as seen in (27), A: depends on the 
differences between Ex,, Euy, and E,,. To aid us in understanding the influence of 
Eii on A: (and psi) it is quite useful to characterize the form or shape of Eii in terms of 
moments. Thus we define the nth moment of Eii by 1: dklc“Eii(L). The zeroth moment 
is simply the stress, i.e. 1; dEEii = (u t ) .  We will consider two models for our calcula- 
tion of Pzi: first, the elementary model in which Ex,, Egg,  E,, differ from each other 
only in their zeroth moment but not in their higher moments. That model is simply 

which determines Eii(k)  t o  be Eii(k)  = [(u$)/e,] E(k )  when use is made of 
E = $(Exx + E,, + Ez,). This model is of special interest because, as seen below, it 
leads trivially to Rotta’s relation (30). The zero-moment model is so-named because 
it guarantees that the zero moments are correct [I; dkE,,(k) = (u?)] - which is im- 
portant. The model is not numerically correct a t  very large k or a t  very small k, but 
it is accurate for the intermediate range of k wherein is found a large contribution to  
the integrations in (25). The most questionable feature of this model is that the peaks 
of Ex,, Eyy ,  and E,, all occur a t  the same wavenumber kL. (This feature is tested in 
44.3.) This model also deviates a little from local isotropy. However, small deviations 
have been found in shear flows (Champagne et al. 1970). The second model we will use 
for Eii contains differences between the higher moments of Exx/ (u i ) ,  E,2/ / (ui) ,  and 
EzJ(uE), including different peak wavenumbers. This higher-moment model is given 
in 54.3. 

It is easily seen that the model (29) gives us Rotta’s relation. That is, substitution 
of (29) in (25) gives immediately p,, = p,, = -$,8,, so that the pressure-strain rate 
(22) becomes 

1 € 
2A: = -- c,, (g(u;> - g(U2) - + ( u f ) )  

e0 

cz, = +P,,, J 
which is of the same form as Rotta’s model of A: since [ Q ( u ~ ) - ~ ( u ~ ) - ~ ( u f ) ]  = 
(u;)-Qe,. Note that, for later convenience, we have defined the (Rotta) constant 
C,, = 3pZz to make (30) conform with the notation in I. Similarly i t  is found in appendix 
B that the other diagonal elements of the pressure-strain rate also have the form of 
Rotta’s model: 

e 
2 4  = -- C ,  ( (u t )  - l e , )  (i = z, y, z),  

e, 

C,, = C,, = C,, (for model (29)). 
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The Cii are equal for the model spectrum in (29), but not necessarily for other spectra. 
Finally, the numerical value of the Rotta constant C,, = #/3,, is obtained by sub- 

stituting the model expressions of Eii into (25) and integrating: 

C,, = 2-1 

C,, = 2.9 

C,, = 3.6 

(for R, = 50)’ 

(for R, = l,OOO), 

(for R, = co), 

which can be shown to be insensitive to m, the large-wavelength behaviour of the 
spectrum. Such an insensitivity was also found in I for the off-diagonal constant C,. 
A new, and quite interesting, feature found in (31) is that C,, varies significantly with 
the ‘Reynolds number’ R, even when R, is large. Consequently, C,, may vary from 
one flow to another in a predictable way. The numerical value of theoretical C,, lies 
within the range deduced by empirical and experimental determinations (e.g. Hanjelic 
& Launder 1972; Launder et al. 1975; Champagne et al. 1970; Reynolds 1976) but is 
substantially larger than the value deduced by Lumley & Newman (1977) from the 
data of Comte-Bellot & Corrsin (1966) (a value, incidentally, which implies slow 
return to isotropy when near isotropy). We will discuss the variously determined 
values of C,,, and the uncertainty in our C,, caused by our assumptions, in 5 6. First, 
we wish to call attention to an inadequacy of Rotta’s model. This inadequacy is in the 
assumption that C ,  = C,,; i.e. that the coefficient of the off-diagonal element (of the 
pressure-strain-rate model) is equal to the coefficient of the diagonal element in the 
linear limit of very small anisotropy. There is a qualitative and numerical difference 
between C,, and C,,, as discussed next. 

4.2. Comparison between C,, and C,,: an inadequacy of Rotta’s model 

While substantial deviations from Rotta’s model are known to occur when the 
anisotropy is large, it is widely supposed that the Rotta model is valid in the asymptotic 
limit of small anisotropy and large Reynolds number. However, we find that this is not 
the case; a numerical and qualithive difference exists between C,, and C,, even for 
vanishing small anisotropy. This difference is easily seen by comparison of (25) with 
the expression for C,, given by (39) of I. The latter expression is 

where Ex,(k,) = (2~r)-~kq/: dq5,la d8,sin 8,S,,(k,) is the average of S,,(k,) over a 
spherical shell just as E,,(k,) is the average of S,,(k,) over a spherical shell. The ratio 
of this C,, to C,, = #p,, in (25) is 
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The qualitative difference between C,, and C,, comes from the fact that  Ex, decreases 
rapidly with k,  in the inertial range (i.e. it is found experimentally that E,,(k,) cc k,) 
or lqf when k, 9 k,), whereas E,,(kl) decreases relatively slowly with k ,  in the inertial 
range (i.e. E,,(k,) cc k,+ when k ,  9 kL) .  Consequently, the contribution to C,, from 
inertial-range scales is very small, whereas the contribution to C,, from inertial-range 
scales is large. Thus, C,, and C,, differ physically. 

There is also a significant numerical difference between C,, and C,,, as seen by 
comparing (31) with equation (44) of I: The numerical ratio between them is 

- c,, = 2.1 (1 +R;)-R;)) (for model (29)), 
C X ,  

(34) 

where we have multiplied C, in equation (44) of I by the factor (1 - R;)) which was 
previously omitted. Thus C,, is about twice as large as Cx,. This difference can be 
attributed to inertial-range scales (as seen by analysing the integrations in (33) with 
Sd N 
2 2 - 1) .  

One could argue that the assumptions used to  derive C, and C,, may vitiate (33). 
However, the same assumptions were used for C,, as for C,,, and the resulting errors 
tend to  cancel out. Such a cancellation is especially evident for the main assumption 
of this work - the cumulant discard. I n  this assumption we derive (in I) a third-order 
velocity correlation as a product of two second-order correlations multiplied by a 
characteristic time T* 21 (Ev,)-l (i.e. (vvv) K /dk(vv) (vv) T * ) ,  and this T* cancels out 
of the ratio (33). More importantly, there is a fundamental basis for the form of (32) 
and (25) as follows. From the point of view of elementary perturbation theory (non- 
linear interactions between Fourier components of p and au,/az) the off-diagonal 
pressure-strain-rate element A$ can be viewed as the interaction (coupling) between 
the turbulence kinetic energy E ( k )  and the off-diagonal velocity correlation S,, (e.g. 
au,/az+ik,u,+ -ik,u.Vu, cc k~u,u,, andpccu.u).For thisreason, themagnitudeof 
A$ depends on the product ( E )  (Sz,) summed over all Fourier components. Similarly, 
A2 represents the coupling between the turbulence energy E and diagonal velocity 
correlations Sii, so that A2 cc (E) (Sii). Consequently, A$ differs from A,NZ because of 
the intrinsic difference between Xii and S,,. Furthermore, AE (and C,,) obtains a 
greater contribution from inertial-range scales than does A$ (and Cx,) because, in 
that range, S,, is much greater than Sx,. Hence, the fundamental difference between 
C,, and C,, exists regardless of the degree of anisotropy. 

4.3. Variations of A$ and Cii with spectra Eii: higher-moment model 

I n  $4.2, A2 and C,, were calculated for the model spectrum (29). The purpose of this 
section is to examine the variations of A2 as well as of A$, and A:, caused by varia- 
tions in the spectrum; i.e. to examine the model-dependence of A$. For this purpose 
we choose a simple spectral model in which the maximum of Ex, occurs a t  a wave- 
number k, which differs from the wavelength ki a t  which E,, is a maximum (to 
simplify the calculation we take E,, = E,,, although (ui) > (ut) in a simple shear 
flow). This model is illustrated in figure 1,  and is suggested by the data of Kaimal et al. 
(1972). Our purpose is to determine how Cii and A$ vary with E,/kL; we characterize 
k;/k, by the first-moment expression 
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Higher-moment spectral model of E,,(k) and E,,(k) showing that k i  It: k ~ .  

(As was pointed out by a referee A$ could vary with (uE)/(uE) as well as with k i / k L .  
To simplify matters, we concentrate on the variation of A; with h&/kL, which we 
have found to be a greater variation.) In our model, we also take (u:)/(u;) = (kL /k i )* ,  
which is suggested by both experimental and theoretical considerations discussed in 
appendix C, so that in this model k L / k i  is not an independent parameter. The details 
of the calculation of A$ are given in appendix C. There we find very large deviations 
from Rotta's model when k i / k L  2 2 .  Particularly unexpected, is the discovery that 
pzx + -$pZz in (22), so that the basic form of Rotta's model is violated. Thus, for 
k i / k L  = 2,  (uE)/(u;) = 2-8 we obtain 

E 
ZAg = -- CO[1*17(~E)-O*26(~;)-0*58(~~)] ,  

e0 

E 
2A& = -- Co [0*52 (u;) - 0.58 (u;) - 0.58 (u:)], 

e0 

E 
2A& = -- Co [1.17 (u:) - 0.26 ( ~ f )  - 0.58 (u;)], 

e0 

where Co N 2. Equation (36) shows a surprisingly large and fundamental deviation 
from Rotta's model. Indeed, this equation shows that the pressure-strain rate is not 
even proportional to the stress anisotropy (ut)-Qe0, when k i / k L  equals 2. Note, 
particularly, that the coefficients 0.52 in A,N, and 0.26 in A$ are very large deviations. 
In  fact, the deviations can be so large that even the sign of A$ can differ from Rotta's 
law. Such a, difference in sign from Rotta's model was recently found in atmospheric 
boundary-layer flow (Wyngaard 1980). In such a case, of course, nonlinear terms are 
essential to describe A$, and this will be discussed at  length in a companion paper. 
A physical interpretation of (36) is discussed at  the end of appendix C. Briefly, it 
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is that if the shapes of the spectra E X x ( k ) / ( @ )  and Es,(k)/(uZ) differ from each 
other, then some of the energy that would otherwise be transferred from Ex, to E,, 
is used, instead, to redistribute the energy contained within Ex, (i.e. to change the 
shape of Exx) .  In  general, if ki + k,, then A$ is given by 

where the coefficients Pij = Pi j (kL/kL)  are functions of kL/k,, and their numerical 
values are given explicitly by (C 4), (C 6)-(C 9). These coefficients approach the Rotta 
values Pii = 1, p,, = P,, = /Iuz = -4, etc. when k i / k ,  approaches unity; i.e. the 
Rotta form holds in the asymptotic limit1 of small spectral anisotropy. For shear flows, 
we estimate (from the assumed dependence of Pij on (uE)/(uz) 21 ( k L / k i ) $ )  that 
(u;) must be within 20 yo of {uz) in order for the Rotta form to be correct within a 
factor of 2 - which is still a substantial deviation. We conclude that a term linear in 
the stress anisotropy aii as proposed by Rotta does not always exist (such a term is 
approached asymptotically only as the spectral anisotropy approaches zero, or when 
Eii/(u%) is the same for all i). This is because the linear term of A$ is actually linear 
in the spectral anisotropy S& rather than in the stress anisotropy aii, and a small value 
of aii does not always imply a small value of Sg. Another way to explain this con- 
clusion is to point out that  s:, can itself be a nonlinear function of aii, so that a 
quantity linear in Sg (2AtL is such a quantity) is not always linear in aii. 

Generally speaking, Sg requires two or more flow parameters to specify its influence 
on A g .  The, stress anisotropy aii furnishes only one; kL/kL furnishes another. TO 
illustrate this symbolically we note that A: is proportional to S$(k)  and the latter, 
in our model, can be expressed in the form 

f l $ ( k )  = aiiFl(k) + < i ( k i / k L ,  k), 

where Fl(k) is a function normalized to unity, and qi is a function which depends on 
kilk, (but not on aii) and vanishes only when kL/kL equals unity. For this model, 
S$(k) cannot be approximated by the Rotta form a$iFl(k) unless k i l k ,  is close to 
unity, which illustrates why the validity of Rotta’s model is more restricted than is 
generally supposed. (Our extreme example is that i t  is possible for uii to be zero and 
yet for S$, and consequently At;, to be non-zero. A model based on a is obviously 
inadequate for that case. I n  more general cases, S$/aij is not necessarily the same for 
all i andj ,  and the differences cause deviations from Rotta’s model.) 

The important question that emerges is whether or not kilk, differs from unity in 
real flows; i.e. do higher moments of Ex, differ from those of E, in actual flows? This 
question can be answered by experimental determinations of Eii(k) (which require 
measurements of Sii(k) as a function of k). Information on X,,(k) has been partly 
provided by experiments (e.g. the spatial isocorrelation measurements of Champagne 
et al. 1970 and Harris et al. 1977). However, further measurements of S,, and of S,, 
and S,, are required to  determine k i / k L .  The atmospheric measurements of Sii(kx) 
by Kaimal et al. (1972, figure 17) suggest that k i / k L  is quite large (exceeding 3) a t  
very-high-Reynolds-number shear flow. I n  that case, one can expect large deviations 
from Rotta’s model as in (36). Again, we emphasize that these deviations occur in the 
linea,r anisotropy term - nonlinear terms have not been considered. We also wish to 
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emphasize our belief that nonlinearities can be very important (e.g. Harris et al. 1977), 
and these will be discussed separately. Indeed, the observations of Harris et nl. cannot 
be explained by only the linear term (37). 

5. Further discussion of invalidities of Rotta’s model 
5.1. Diagonal elements of Rotta’s model 

The purpose of this section is to discuss and emphasize the limitations of Rotta’s 
model noted in Ss4.2 and 4.3. There, it was seen that Rotta’s model is not generally 
valid as a linear anisotropy term. The main deficiency is that the diagonal pressure- 
strain-rate element AE is not even proportional to the stress anisotropy aii except 
for special spectra such as Exx/(u$) = Egg/(u:) = E,,/(u$> (only the zeroth moments 
ofEiidiffer). The other reason is that C, + Cii (althoughC,/Cii isdetermined). In both 
cases, the deficiencies of Rotta’s model occur because A$ depends on small spectral 
scales (the inertial-subrange scales) as well as on the larger scales (the energy-containing 
scales), and it is not generally possible to characterize simultaneously both spectral 
ranges with a single flow quantity such as the stress anisotropy aii. Put simply, 
more than one moment of the spectrum may be required to characterize the large 
spectral range that determines A$ (aiz furnishes only one such moment). We must 
therefore conclude that Rotta’s hypothesis is not generally valid as a linear term in 
anisotropy. It can be used as such for special spectra when account is taken of Cxz/Ciz. 

Curiously enough, although A8 is not generally linear in the stress aniostsropy azi, 
(27) suggests that Rotta’s physical arguments work very well for the spectra E,(k,) 
a t  each wavenumber (as distinct from the integral over all wavenumbers). That is, it 
is seen that 2Ag depends on the spectra in the anisotropic form 

Hence, Rotta’s physical arguments are borne out a t  each particular wavenumber. 
For this reason, if all the energy were concentrated in a single wavenumber, described 
by Eii(k) = (uf) 6(k - ko),  we would then have 2A,N,proportional to (uf) - +(ui) - *(uE), 
as hypothesized by Rotta. The difficulty with this hypothesis, we see, is that different 
scales are weighted differently in their contribution to 2Ag because E;(kl) is not 
generally proportional to (uf) - &(u$) - $(u:). Consequently, Rotta’s arguments are 
qualitatively correct but not generally quantitative. 

5.2. Off-diagonal elements A,N, 

The second deficiency found in Rotta’s model is that C,, + Cii. This difference occurs, 
as explained in $4.2, because C, depends on E ,  and consequently receives important 
contributions from only large wavelengths (of Ex,), whereas Cii depends on Eiz and 
consequently receives important contributions from both small and large wave- 
lengths (of Eiz). The ratio Cii/Cx, is computed to be about 2 for the zeroth-moment 
spectral model. For general spectra, A g  can be modelled by a single flow quantity, 
whereas A2 cannot. In  all cases we conclude that the off-diagonal elements of the 
pressure--strain rate should be modelled differently from the diagonal elements. 
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6. Comparisons with experiments 
I n  this section we will briefly compare our theory with the experiments of Comte- 

Bellot & Corrsin (1966) and Champagne et al. (1970). We also wish to comment on the 
very large nonlinearity observed by Harris et al. (1977). The comparisons should 
necessarily be brief because, for reasons given in 554.3 and 5, a calculation of A 2  
requires more information about the spectra Eii or Sii than is available. 

The data of Comte-Bellot & Corrsin was used with the Rotta form of AK by 
Lumley & Newman (1977) to derive C,, = 1 for the Rotta constant (Cll = 2 with 
their definitions); a value, i t  was pointed out, that could explain the observed slow 
return to isotropy. This value differs from (31) and was observed in I to differ from 
our theoretically calculated value C,, = 1.6. Several possible explanations for this 
difference were mentioned. Among these is that our theory is limited to quasi- 
stationarity, whereas the experiments were for rapid energy decay; a second possi- 
bility is that the cumulant-discard approximation of the theory introduces a numerical 
error. These explanations are still possibilities to be investigated. The third possible 
reason given seems to  be borne out by our present calculation: this is that the Rotta 
model may not be correct even when a, the stress anisotropy, is small as in the 
experiments. Thus, we have shown that the validity of Rotta’s model requires spectra 
of a special form, and the experiments of Comte-Bellot & Corrsin (1966) do not 
provide information on Sii needed to determine whether or not Rotta’s form is valid 
for that experiment. In  a decay experiment there is no obvious source of large-scale 
wavelengths that can ensure that the shapes of E,,/{ui) and Exz/(uf> are the same. 
This may explain why departure from isotropy a t  moderate as well as large correlation 
distances is found in the later grid-decay experiments of Comte-Bellot & Corrsin ( 1  97 1). 
Curiously enough, if we were to  assume (although we do not have the right to) that 
the ratio of spectral peak wavelengths is given by kilk, N ((uz)/(uE))$ as in our 
shear-flow model of 54.3, then we find using (37) that the stress term /311(ut)+ 
,012(u~)+/313(u~) equals approximately &,, instead of the Rotta value all. Use of 
that value (i.e. replacement of a,, by *all) in Lumley & Newman’s (1977) expression 
for 2A?i would yield C,, = 2 (twice what they obtained), which is also in closer agree- 
ment with the values calculated in 5 4.1. The observed slow return to isotropy might 
then be explained by the fact that there is no energy source or other mechanism to 
isotropize the largest scales. However, we must emphasize that this discussion is 
entirely based on conjecture since Eii/{ut) is not known sufficiently, and, conse- 
quently, 2Ag cannot be determined precisely. Consequently, the interpretation of 
Lumley & Newman remains a possibility. 

The experiments of Champagne et al. have the Rotta constants Cii given by 
C,, N 2.3, C,, N 1.8, C,, E 3.0, after multiplying by 3 to  make their definition of Cii 
agree with ours. The average of these values is in good agreement with (31). However, 
this average agreement is somewhat fortuitous because, for a shear flow, the zero- 
moment model on which (31) is based does not rigorously apply. Equation (37) should 
be used instead. In  addition, nonlinear anisotropic corrections (or corrections of order 
(a  U / a z ) 2 )  must be suspected because of the large difference botween the experimental 
C,, and C,,. The difference demonstrates that, even for fairly weak turbulence, the 
deviations from Rotta’s model are significant. This conclusion is not offset by 
inclusion of the mean-strain-rate contribution A$ because i t  does not! malre a linear 
contribution to 2p i1 (p  aui/ai); the linear anisotropic part! of A? is zero. 
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A dramatic observation of deviations from Rotta’s model was made by Harris et al. 
(1977). They measured 2Ag(eo/e) azl, which we denote by Cz for convenience, and 
found that C&, was large and ‘highly variable’, ranging from 4 to  12 within a section 
of their apparatus, while the observed values of Czx and C,*, were much smaller and 
relatively constant. We point out a simple fact about this curious behaviour. This 
fact is that the values observed for C&, are large because the linear anisotropy a,, = 
( u E ) - ~ e ,  is markedly small in those experiments. The influence of a small 
azly on C&, is easily seen if one writes the total contribution t,o the pressure-strain rate 
A:, in the form 

where C,,a,, is the Rotta term and AUy is the deviation from the Rotta term. Clearly, 
if, as in the experiment, a,, is very small, then measurements of 2A&eo/ea,, will be 
very large (BC,,), even if the deviation A,, is not large. That this is, indeed, the 
experimental situation of Harris et al. is found from the measurements of (ul) given 
in their figure 3. For example, a t  the downstream distance xl/h = 10, they have 
u:/Ut = 24 x 10-4, uE/U%= 14 x so that axx = 8.3 x 10-4U& 
ayy = - 1.7 x 10-4U%, and a,, = - 6-7 x iO-4U%. It is seen that la,,l is much smaller 
than asx and la,zl, with the consequence that 12Ageo/eaiiI is much larger for i = y 
than for i = x and z (since 1A&1 is nearly equal to IAgI and +IAgxl in the experiment). 
Hence, even a moderate nonlinearity can cause a large deviation from Rotta’s model 
when a,, is small. 

uE/Ut = 9 x 

7. Errors of the calculations 
The major sources of error or uncertainties in our calculation are: ( a )  the simplifica- 

tions and assumptions about the spectra used in the angular integrations given in 
appendix A; ( b )  the assumption of an inertial subrange at  large k ;  and ( c )  the cumulant 
neglect used to  derive (9). The errors due to spectral simplifications and approxima- 
tions were discussed in detail in $ 7  of I and estimated to be only a few per cent for a 
given model of E ( k )  and Ex,(k).  That discussion and conclusion applies to our calcula- 
tion in appendix A and 94. It is the deviation of the spectra Eii(k) from the assumed 
inertial subrange that can cause significant variations of Cii or AE. That is, the 
calculated values of Cii and A$ can be quite different if Eti does not vary as k-5 in the 
subrange ( k ,  < k < k”). Indeed, the existence of an inertial subrange is the basis of 
our calculation of the numerical values of Cii and pij in $4.  

The major uncertainty of the theory is the neglect of the two-time fourth-order 
velocity cumulant, which is not to be confused with the neglect of a one-time cumulant 
in quasi-normal theory (e.g. Proudman & Reid 1954). As mentioned in I, the error 
caused in A$ or Cii by our cumulant neglect has not yet been estimated - although 
this may be done at  a future time. 

8. Summary and conclusions 
(1) .  (a )  The (turbulent part of) the off-diagonal pressure-strain-rate elements 2At; 

are derived theoretically in terms of measurable quantities (velocity spectra S). The 
derived expression, which is given by (9), is valid to general order in the anisotropy. 



18 J .  Weinstock 

( b )  The theoretical pressure-strain rate is then evaluated explicitly in terms of the 
Reynolds stress (ut) to first order in anisotropy, and the numerical (Rotta-type) 
constants) are derived in terms of the spectrum Sii in 5 3 .  

( 2 ) .  It is proved that the diagonal element 2A$ is proportional to the stress aniso- 
tropy aii (in agreement with the Rotta relation) provided that the spectra has a 
special form such as the zeroth-moment model; otherwise i t  is not. For that spectral 
model, the Rotta constants Cii are calculated theoretically (and given by (31)).  It is 
shown that Cii is quite insensitive to the long-wavelength behaviour of the spectrum, 
but that Cii varies with the ‘Reynolds number’ R, even for large R,. 

(3). The diagonal elements 2Ac are calculated explicitly for a more general class 
of spectra referred to as the higher-moment spectral model, and the variation of 
2Ag with the shape of these spectra is determined. This expression is given by (37). 
Surprisingly large deviations of 2Ag from Rotta’s form are found when Sxx/(u:) =/= 
8,z/(u:). If these spectra are sufficiently different, then the linear term of 2A$ can 
even differ in sign from the Rotta term. I n  such a case, however, the nonlinear aniso- 
tropic terms are clearly essential and not to  be ignored. 
(4). It is concluded that the Rotta model is not valid in the simple form given by 

2 A N  = - ( e / e , )  Ca. There are two aspects of this invalidity. 
( a )  The off-diagonal element 2A,N,/ax, is intrinsically and quantitatively dif- 

ferent from the diagonal elements 2At;/aii. This is because the latter depend impor- 
tantly on the large-wavenumber as well as the small-wavenumber part of the 
spectrum, whereas the former depends mainly on only the small-wavenumber part 
of the spectrum. Hence, 2A$/aii =/= 2Ag/uxz, which contradicts Rotta’s model. 

( b )  The diagonal elements 2Az are not generally proportional to aii except for 
special spectra such as the zero-moment model (Sxx/(ui)  = Syy/(ui) = S,,/(u:)). 

(5).  The difference between 2Az/ai i  and 2A,N,/a,, is calculated for the zeroth- 
moment model, and it is found that Cii/Cx, N 2. For that model, Rotta’s relation can 
be used if the difference in Cxz/Cii is taken into account; i.e. if one takes 
2Ag = - ( e / e , )  Caii, 2Ag = - ( e / e , )  C,,, with Cx,/C given by (34). 

(6).  Much emphasis is placed on the distinction between the spectral anisotropy 
S A  = S - S r  and the stress anisotropy a = (uu) - vi I .  It is pointed out that  the Rotta 
model is the first term in an expansion of 2AN in powers of a, whereas the theory is 
an expansion of 2AN in powers of S A .  The validity of the Rotta model hinges on 
whether or not the integrals of S A  such as (14) can be approximated as being propor- 
tional to a. Such a proportionality is not valid for all spectra S A ,  and the deviations 
from Rotta’s model that  we calculate (in 54.2) are deviations from that propor- 
tionality. A physical interpretation of these deviations is given. 

(7).  For nearly homogeneous shear flows, the theoretical linearized magnitudes of 
2AgX and 2A& given by (37) (with pix and pi, determined from the data of Kaimal 
et al. (1972)) is small, much smaller than 2Ag or than what is given by Rotta’s model. 
This implies that  nonlinear terms are essential. The need for a nonlinear correction, in 
even weak-shear flows, is suggested by the experiments of Champagne et ul. (1970), 
wherein is found a significant difference between C,, and Cyy. Larger nonlinearities 
are found by Harris et ak. (1977). These nonlinearities should be explored in the 
future. A preliminary calculation indicates that an important nonlinearity propor- 
tional to ( a U , / a ~ ) ~  comes from At:, the mean-strain-rate contribution to  the pressure- 
strain rate. Such a term would not be difficult to model. 
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Appendix A. Angular integration 
In  this appendix we wish to integrate (24) over the directions of k, and k, (as was 

done in I for CXJ .  We integrate the p,, term first. The pzx and p,, terms will be trivial 
to integrate afterwards. 

Calculation of p,, 
To integrate (24), it  is convenient to divide 7, into several parts, the first part of 
which is dominant (the largest part) and the last part of which is relatively small. 
(Such a division was also made in appendix B of I.) To obtain such a division we use 
k, = El,+ k,, and 

k:- (k, .kJ2 = k: [ I  - (k1.k2)2] = k: [( 1 + kl.k,)2 - 2(&, .k2) ( 1  + f;, .&,)I, (A 1)  

Substitution of ( A  2)  in (24) thus yields the 4 parts of C,*: 

pzz = p2) +pi;' + pq+  pi:), 1 (j= 1, ..., 4). 

The pi:) part is largest and simplest. It is given by substituting (A 2) in (A 3) as 

Let 8 denote the angle between k, and k,: 

k,. k, = k,  k ,  cos 8. 

The dependence of the integrand of (A 4) on 8 is given, with k2 = 1 k ,  + k,l 2, by 

kiZ [k: - (k,  . &,),I - 
kj + k2, + 2k1. k, 

k2,, k?( 1 - cos2 0) 
k2, + k2, + 2k,k, cos 8' 

- 
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As in I, the chief assumption we shall make to evaluate pji), as well as the other p$ 
is that the main contribution to the (scalar) k, and k, integrations in (A 4) comes 
from k, 2: k,. This assumption was found in I ( 9  7 d ) to cause an error of only about 
2 % and greatly simplifies the integrations in (A 4). One basis of this assumption is 
that the factor k&k:/(k:+ k2,+ 2k,k2cos6) is itself a maximum when k, N k, and 
decreases fairly rapidly when k, /k ,  varies away from unity. The validity of the 
assumption k, 2: k, is enhanced for the zero-moment spectral model used in $4.1 
because Sii and E have their maximum values a t  the same wavenumber k,. That 
assumption is weaker for the more complex spectral model of $4.3 (that model is 
discussed separately in appendix C). Here, then, we approximate (A 5 )  by 

(A 6) 
k;, [k; - (k,  . &,),I 
k2, + k2,+ 2k,. k, - (k2, + k;) (1 + cos 0) - 

kg,ky (1 - cos2 6 )  ki,k; (1  - cos 0) 
k2,+k; * 

- 

When (A 6) is substituted into the integrand of (A a), the cos 8 vanishes because the 
remainder of the integrand is independent of 8. Therefore, substitution of (A 6) in 
(A 4) vields 

We next express the k, and k,  integrals in spherical co-ordinates, e.g. 

where 6, is the angle k, makes with the *-axis ( I G , ~  = k,cos6,), and q5, is the (azi- 
muthal) angle of k, in the plane perpendicular to 8.  We then perform the 8, and q5, 
integrations in (A 7 )  as follows: 

We also integrate S,(k,) over a spherical shell of radius k,  to obtain a scalar spectrum, 
which we denote by E,,(k,) : 

where 8, is the angle k, makes with the x-axis and q5, is the azimuthal angle of k,. 
Substitution of (A 8) and (A 9) in (A 7) finally gives the scalar integral 

Next, we evaluate ,@. The expression for pi:) is given by substitution of y,,(2) from 
(A 2 ) ,  in (A 3): 
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This integrates very easily if we use approximation (A 6) : 

k2, - (k, . k,), N k; ( 1  - cos 8) =--[I- k2 kl ,  k,, + kIUk2, + k " k ,], (A 12) 
k2 - k2,+k; k2, + kg kl k2 

where we have used the identity cos 8 = (k, . k,) /k ,  k,. We substitute ( A  12) into 
(A 11)  and note that all terms odd in k2x, k,, or k,, vanish because E(k,) is an even 
function' of of these components. Hence (A 12) reduces to 

The right-hand side of (A 13) vanishes because E(k,)  is a scalar function of k ,  so that 
the integral of k& - s(k& + k;,) over k ,  vanishes; i.e. 1 dk ,  k%,/ki = 1 dk, kf,/ki = 

is given by substitution of y,,(3), from (A 2),  into (A 3). The 
jdk,k%X/k%. 

The expression for 
form of yzz( 3) is greatly simplified by using 

where we have again used approximation (A 6). Substitution of y,,(3) and ( A  14) in 
( A  3)  yields /3$ as 

Those terms in ( A  14) which are odd in k2x, k,, or k ,  vanish, so that using k, = k,, + k,, 
( A  15) reduces to 

The k,  and k, integrals are next expressed in spherical co-ordinates as was done for 
/3::). The 8, and qi, integrations in (A 16) are given by 

and the 8, and 4, integrations are the same as (A 9). Substitution of (A 9) and (A 17) 
in (A 16) gives as the scalar integral 

This expression is similar in form to that given by (A 10) for /3$:). The integrand of 
(A 18) contains the additional factor k2,(k;+k:)-l. However, as pointed out for 
( A  4) ,  the main contribution to the integrations in (A 18) come from k ,  21 k,. (This 
assumption is not used for the more general calculation of /3$) in appendix C.) In  the 
present case we can take k$(k2,+k%)-l 'v 4 in (A 18), and, comparing with (A lo), 
obtain 

pi;) N - :p;z". (A 18') 
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that pi:' is more complex than pi;), pi:) and 
mainly because it contains the factor 

The expression for pi:) is given by substitution of rZz(4) in (A 3 ) .  It is then seen 
because it contains more terms, but 

k-' = (k2, + k2, + 2k,. k2)-I N_ (k2 + k;)-l( 1 + fc, .&,)-I 

(the term (1 + k, . k2)-l cancels out in the other pi,). The quantity (1 + k, . k,)-l can be 
integrated by the straightforward expansion 

(1 + L, .L2)4 = 1 A,. fc, + (k, .E,)Z+ . . . , 
and, fortunately, the higher-order terms sum to a very small value (as we have found). 
The other approximation we use in is the following substitution of (A 6 )  in a 
factor of pit) : 

4k! (1 +k,.fi,) -_  k ,  -_- 4kf k ,  
k2 k ,  - kf + kg k,' 

We will not present the remainder of the calculation of 
and because pit) is small. We only quote the result as follows: 

here because it is lengthy 

As with ( A  18), if we use the fact that the main contribution to the integral in (A 19) 
comes from k ,  2: k,, then (A 19) becomes simply 

N - 0*039&f'. (A 19') 

Finally, pzz is obtained by substituting (A lo), (A 13), (A 18') and (A 19') for 
into (A 3) 

The overall accuracy of (A 20) is dependent on the approximations using k, N k, such 
as (A 6). These approximations are discussed in appendix C. 

Calculation of pZz and p,, 
The integration of ( 2 4 )  for bZx and p,, is very similar to the integration ofpeB just given. 
Furthermore, it is seen that pzar is converted into pz, by exchanging k,, with k ,  and 
k,, with k,,. For this reason, it will only be necessary to calculate pzx. 

To perform the k, and k, integrations of p,, it is convenient to divide yzx into 3 parts 

(A 21a) 
as follows: 

Y z x  = r z l x ( l )+Yzx (2 )  +Y,,(3), 

(A 21 b )  
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I )  
f l+fr,.fr,) k, k,. k, 2kq (1  + fr, .fr2)2 

k2 --] +kZk,, [ 1 +-- 
k2 ka, 

y2X(3) (k: ( f r1*fr2)  [4k ( k2 

kf,] (kf+k:)-4k-2. ( A  2 1 d )  

(It is seen that y z x ( l ) ,  y,,(2), yzx(3) are analogous in form to yzx(2), yz,(3), y J 4 )  
respectively; yzx has no term analogous to y,,(l).) Substitution of ( A  21)  in (24) 
yields pZx divided into 3 parts: 

Each of these terms is calculated in the same way as was done for its counterpart 
/3Ji) above. 

Thus, p:;) is given by 

We next substitute ( A  12)  into ( A  22) ,  multiply out the various components of k, 
and k,, and use the fact that terms that are odd in k,,, k,, or k,, vanish when integrated 
over k,. We thus obtain 

pi:) in ( A  23) is equal to zero because the angular integration of kgX over the directions 
of k, is equal to the angular integration of k;,. 

above. The expression for pi:) is 
obtained by substituting ( A  21)  into ( A  22) ,  and is substantially simplified by using 
( A  14). We thus find that /3::) is given by 

The evaluation of @) is very similar to that of 

The last step in (A 24) follows from the fact that terms odd in k%, k,, or k2, vanish. 
The integration over the spherical angles 0, and q5, given by 

and the 8, and 4, integrations are the same as in (A 9).  Substitution of (A 9 )  and 
( A  25) in ( A  24) gives pL$) as 
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This expression can be related to p$ in (A 10) by using our basic assumption (that the 
main contribution to the integration comes from k,  N k,) so as to approximate 
k2,(kI + kg)-l = 4 in (A 26). (This a.pproximation can be shown to be exact in (A 26) 
for the zero-moment model of $4.1 in which E ( k ) / e ,  = E,,/(uz).  The approximation 
is not used for the more complex model of 34.3.) We thus have 

(A 26’) 

which has the same form as 
The quantity pi:) is relatively very small, and is also more complex than pi:). It is 

calculated in the same way as was done for pit). We merely present the result of this 
calculation as follows: 

with E,/(uE) replaced by Ex, f (uz ) .  

As with (A 26) and (A 19) the main contribution to  the integral comes from k, 2: k,, 
so that (A 27) reduces to 

pi:) N - 0*096/?::’. (A 27’) 

Finally, pZx is obtained by substituting (A 23), (A 26’) and (A 27’) into (A 22): 

Note that PZx equals - ipzz  when Exx/(u;) = Ezz / (u~) .  
The expression for pZy follows from (A 28) by a simple symmetry consideration. 

That is, it is seen in (20) that yzy is obtained from yzx by interchanging x and y (i.e. 
interchanging k,, and k,,, k,, and k,,, S,, and Syy, and u, and u ~ ) .  Hence, p,, is ob- 
tained from p,, by simply interchanging x and y: 

Appendix B. Derivation of At, and Afg 
The purpose of this appendix is to derive expressions for 2A& and 2A,N, analogous 

to the expressions derived for 2Ag;  expressions such as (22) and (27). To do this, we 
write the diagonal pressure-strain-rate elements in Fourier components as was done 
for (2)s 

( p  au, f an) = - - (R 1 )  
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and then we substitute the p expression (5) into (B 1) to obtain 

2p;l ( p  &,/an) = 2Agi + 2A$, 

25 

It can be seen from (B 2) that the expressions for A 2  in $33 and 4 can be changed to 
expressions for Agx by suitably interchanging the subscripts z and x. Similarly, A& 
can be obtained by suitably interchanging z and y. Hence, from (22) and (24) we can 
write A,N, and A& as 

where yni is determined by symmetry from (20) to be 

k2, - (k, . fc2)2 
(k2 k2 4 k2 1+ 2) 

We thus have (B 3) as the generalization of (22) for 2A& (where n = x,y,z). The 
required coefficients yx2,  y,, and yni are given by (B 5).  Note that (B 3) agrees with 
Rotta's model if bx, = pxz = pyz = - gpnn. 

We integrate over the spherical angles of k, and k, in (B 4), exactly as in 
appendix A. The result is the same as (25) (except for interchanged subscripts): 
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The generalization of (27) to apply to 2A& and 2A[, can now be obtained immediately 
by substitution of (B 6) into (B 3). We thus have 

which is seen to agree with (27) when we use E = $(Ex, + E,, + E,,). 
Substituting (29), the zeroth-moment model, into (B 7)  we obtain the Rotta relation 

which generalizes (30) to all the diagonal components. In  addition, for the zeroth- 
moment model it is seen, from (B B ) ,  that C,, is the same for all n :  

C,, = C,, = C,, (for model (29)). (B 9) 

Appendix C. Higher-moment model 
in (37), 

and thus determine AE, for a spectral model in which the peak of Ex,@) does not occur 
a t  the same wavenumber as does the peak of Ez,. Such a model is suggested by the 
data of Kaimal et al. (1972). We refer to this model as the higher-moment model 
because, as we will see, all the moments of Exx/ {u i )  differ from those of E,,/{u;). To 
specify the model of Eii,  we use three considerations suggested by the experiments: 
( 1 )  Ex,, E,, and E,, approach each other for large k (approximate local isotropy a t  
large k ) ;  (2) {u:) > (ui) > (ui); and ( 3 )  Ex, peaks (has its maximum) at  a smaller 
wavenumber than does Ezz. The model we chose for Eii is illustrated in figure 1. It is 
given by 

The purpose of this appendix is to evaluate numerically the coefficients 

where it is seen that Ex, and E,, have different peak wavenumbers, denoted by k, 
and ki, respectively. Note, too, that for the sake of simplification we have taken 
E,, = E,,. This simplification is approximately valid for weak shears but not for 
strong shears. Nevertheless, this model is useful because at  this time we are interested 
in demonstrating how the single parameter ( {u i )  + (uz))/(ui) influences Pii and A8 
rather than in dealing with the complexity of two parameters {u;)/{u;) and 
(u;)/(uz). It would not be too difficult to re-calculate the results of this section for a 
model in which E,, += E,,, if that should become desirable. The r.m.s. velocity v, of 
the present model, which we will need later on, is given by 

Qe, = vt = Qas*ki;%[l+2(kL/k~)~][1+Q(m+1)-1]. (C 2 )  

With the model spectrum specified by (C 1) we can now evaluate the numerical 
coefficients Pii defined by (24). This evalucltion requires that we do the k, and 
k, integrations of (24), and these integrations can be divided into two parts: ( 1 )  an 
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integration over spherical angles, and (2) an integration over wavenumbers. HOW- 
ever, the angular integrations are not quite as simple as in appendix A because 
ki + k,, and, consequently, we cannot take k, 2: k, everywhere in (24) as we did in 
several equations of appendix A. Particularly inadequate, for the present case of 
kl, =+ kL, is the approximation k,/k,  = 1 in going from (A 19) to (A 19')) and the 
approximation k2,(k: + it;)-, = 2j in going from (A 18) to (A IS'), because k, /k ,  takes 
on the value k L / k i  for a significant part of the integration. We do not use those 
approximations in (24). On the other hand, the use of approximation (A 6) can be 
justified as adequate for (24). To see why, let us compare approximation (A 6) with 
the unapproximated form (A 5). In the worst case of kl, /k,  = co, we have k,/k, = 00 

for a significant part of the integration. In that case the right-hand side of (A 5) is 
@,(l -cos20), whereas the right-hand side of (A 6) is kg,(1 -cos0). Averaged over 6 
it  can be seen that (A 6) is about 30 % greater than (A 5 ) .  Furthermore, k, 21 k, for 
an important part of the integration in (A 4) because the factor in (A 5) itself is a 
maximum. For that part of the integration there is almost zero error. Hence, when 
integrated over all k, and k,, the approximation (A 6) tends to introduce a positive 
error of only about $ ( O  + 30) = 15 % for the worst case of kl,/kL = 00 (or zero). How- 
ever, we are only interested in less-extreme cases for which kl, /k,  does not exceed 
2 or 3. In those cases use of the approximation (A 6) results in a positive error of less 
than 5 or 10%. Such an error or uncertainty is adequate for the present purposes, 
considering the uncertainty of the cumulant neglect, and we shall use (A 6) in (24). 

With the use of (A 6), the coefficient pZz in (24) is calculated in the same way as in 
appendix A, except that we do not approximate (A 18) and (A 19) by (A 18') and 
(A 19'). Instead, PZ2 is given by (24) with /3:;), /3::), /3:2) and PL:) given respectively by 
(A lo), (A 13)) (A 18) and (A 19): 

It is straightforward to evaluate (C 3) with E, and E = *(E,,+ E,, + Ezz) given by 
(C 1) .  This can be done easily by computer, but would mask the dependence of PZz on 
kilk,. For this reason, we will use a simplifying approximation for the integrations 
in (C 2) in order to make the dependence of PZz on kl, /kL explicit. This approximation 
is to take E,,(k) = ('14:) 6(k - kL),  E,, = (ui) 6(k - kl,), E,, = Ez, for those integra- 
tions. This simplification makes P,, (and all the Pi,) too small, because it ignores the 
large-k contribution, but it gives the ratio of the pii accurately. In fact, we have also 
calculated (C 2) without use of the simplification and found that the value of Pij 
is about twice the value in the simplified case for all i and j. Hence, we use the 
simplified integration and multiply by a factor of 2. Substitution of the simplified E,, 
in the integrand of (C 3) and putting y = k i / k ,  we obtain 

2 F L h l  116 
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where use has been made of (C 2) and the relation eo = +(ui) (1  + 2y-3). (The term 
(0.72) 2iyi in (C 4) comes from the terms QE,,(k,) E,,(k,) + +E,,(k,) E,,(k,) which 
occur in E(k2) E,,(k,) of (C 3), whereas the square-bracket term in (C 4) comes from 
the term +E,,(k,) E,,(k,) of (C 3).) The numerical constant CO equals 0.91 for the 
simplified model and equals 2 for the unsimplified mods1 given by (C 1). It is seen in 
(C 4) that y = klL/kL has a substantial influence on p,,. 

The other coefficients /3,,, f ix , ,  Px,, /Ix, etc. are calculated similarly to p,,. Actually, 
it is only necessary to calculate p,,, p,, and /3,, because all of the remaining Pij can 
then be determined from symmetry and incompressibility considerations. For pZz, 
the angular integrations of (24) aregiven by (A 22), with &’, /3;:), ,8hz given respec- 
tively by (A 23), (A 26) and (A 27) (the approximations (A 26’) and (A 27’) cannot be 
used for model (C 1)):  

Substitution of the delta-function model for Eii into the integrand of (C 5 )  yields 

It can be seen that y has a particularly strong influence on p,,, and can cause the latter 
to decrease by a factor of 2 when y increases from 1 to 3. 

The coefficient p,, is determined from (C 5 )  by replacing E,,(k,) with Evv(kl), and 
then substituting the delta-function model for Eii. The result is 

from which it can be seen that p,, increases by only 10 % as y increases from 1 to 2. 

Finally, the coefficient P,, is determined from (C 3 )  by replacing E,,(k,) with Exx(kl), 
and then substituting the delta-function Ei, model into the integrand. The result is 

where it can be seen that y has a very great influence on p,,, causing the latter to 
decrease by a factor of 2-3 when y increases from 1 to only 2. 
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The remaining Pij are determined by symmetry because Eyy = E,, in our model: 

P,, = P Z X )  P y ,  = P z z ,  Pv2 = Pzv3 P x y  = Pxz  = PZ,. (C 9) 

Thus, the Pii are all evaluated by (C 4), (C 6)-(C 9) as functions of y = lci/lcL. The 
simplified model gives Co = 0.91; the unsimplified model gives approximately the 
same values for Pii with Co = 2. These expressions for Pii show that variations of y 
cause large variations of Pxx, P,, and Pyx,  moderate variations of P,, and Pyy, and 
small variations of PX,, PXz, PVz and P2,. It can also be shown that the calculated Pij 
satisfy 

which is a consequence of the incompressibility condition 
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